Nuprl Lemma : eu-add-length-zero2

[e:EuclideanPlane]. ∀[x:{p:Point| O_X_p} ]. ∀[a:Point].  (x |aa| x ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-add-length: q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T euclidean-plane: EuclideanPlane all: x:A. B[x] prop: squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  iff_weakening_equal eu-length-null-segment euclidean-plane_wf true_wf squash_wf eu-add-length_wf eu-X_wf eu-O_wf eu-between-eq_wf eu-point_wf eu-add-length-zero
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalityEquality setEquality setElimination rename dependent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x:\{p:Point|  O\_X\_p\}  ].  \mforall{}[a:Point].    (x  +  |aa|  =  x)



Date html generated: 2016_05_18-AM-06_38_17
Last ObjectModification: 2016_01_16-PM-10_29_51

Theory : euclidean!geometry


Home Index