Nuprl Lemma : eu-add-length-zero2
∀[e:EuclideanPlane]. ∀[x:{p:Point| O_X_p} ]. ∀[a:Point].  (x + |aa| = x ∈ {p:Point| O_X_p} )
Proof
Definitions occuring in Statement : 
eu-add-length: p + q, 
eu-length: |s|, 
eu-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-X: X, 
eu-O: O, 
eu-point: Point, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
all: ∀x:A. B[x], 
prop: ℙ, 
squash: ↓T, 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
iff_weakening_equal, 
eu-length-null-segment, 
euclidean-plane_wf, 
true_wf, 
squash_wf, 
eu-add-length_wf, 
eu-X_wf, 
eu-O_wf, 
eu-between-eq_wf, 
eu-point_wf, 
eu-add-length-zero
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityEquality, 
setEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x:\{p:Point|  O\_X\_p\}  ].  \mforall{}[a:Point].    (x  +  |aa|  =  x)
Date html generated:
2016_05_18-AM-06_38_17
Last ObjectModification:
2016_01_16-PM-10_29_51
Theory : euclidean!geometry
Home
Index