Nuprl Lemma : eu-cong-angle-symm2

e:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (xyz abc  abc xyz)


Proof




Definitions occuring in Statement :  eu-cong-angle: abc xyz euclidean-plane: EuclideanPlane eu-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane eu-cong-angle: abc xyz and: P ∧ Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B uiff: uiff(P;Q) uimplies: supposing a
Lemmas referenced :  eu-congruent-iff-length exists_wf eu-congruent_wf eu-between-eq_wf euclidean-plane_wf eu-point_wf eu-cong-angle_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename productElimination independent_pairFormation dependent_pairFormation productEquality because_Cache sqequalRule lambdaEquality dependent_functionElimination independent_isectElimination equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (xyz  =  abc  {}\mRightarrow{}  abc  =  xyz)



Date html generated: 2016_06_16-PM-01_32_20
Last ObjectModification: 2016_05_23-PM-01_01_47

Theory : euclidean!geometry


Home Index