Nuprl Lemma : eu-cong-angle-symm2
∀e:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (xyz = abc 
⇒ abc = xyz)
Proof
Definitions occuring in Statement : 
eu-cong-angle: abc = xyz
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
eu-cong-angle: abc = xyz
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
Lemmas referenced : 
eu-congruent-iff-length, 
exists_wf, 
eu-congruent_wf, 
eu-between-eq_wf, 
euclidean-plane_wf, 
eu-point_wf, 
eu-cong-angle_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
independent_pairFormation, 
dependent_pairFormation, 
productEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_isectElimination, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (xyz  =  abc  {}\mRightarrow{}  abc  =  xyz)
Date html generated:
2016_06_16-PM-01_32_20
Last ObjectModification:
2016_05_23-PM-01_01_47
Theory : euclidean!geometry
Home
Index