Nuprl Lemma : eu-cong-angle_wf
∀[e:EuclideanPlane]. ∀[a,b,c,x,y,z:Point]. (abc = xyz ∈ ℙ)
Proof
Definitions occuring in Statement :
eu-cong-angle: abc = xyz
,
euclidean-plane: EuclideanPlane
,
eu-point: Point
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
eu-cong-angle: abc = xyz
,
prop: ℙ
,
and: P ∧ Q
,
euclidean-plane: EuclideanPlane
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
Lemmas referenced :
not_wf,
equal_wf,
eu-point_wf,
exists_wf,
eu-between-eq_wf,
eu-congruent_wf,
euclidean-plane_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
productEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
hypothesis,
because_Cache,
lambdaEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality
Latex:
\mforall{}[e:EuclideanPlane]. \mforall{}[a,b,c,x,y,z:Point]. (abc = xyz \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-06_41_50
Last ObjectModification:
2015_12_28-AM-09_23_09
Theory : euclidean!geometry
Home
Index