Nuprl Lemma : eu-cong-angle_wf
∀[e:EuclideanPlane]. ∀[a,b,c,x,y,z:Point].  (abc = xyz ∈ ℙ)
Proof
Definitions occuring in Statement : 
eu-cong-angle: abc = xyz
, 
euclidean-plane: EuclideanPlane
, 
eu-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eu-cong-angle: abc = xyz
, 
prop: ℙ
, 
and: P ∧ Q
, 
euclidean-plane: EuclideanPlane
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
not_wf, 
equal_wf, 
eu-point_wf, 
exists_wf, 
eu-between-eq_wf, 
eu-congruent_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,x,y,z:Point].    (abc  =  xyz  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-06_41_50
Last ObjectModification:
2015_12_28-AM-09_23_09
Theory : euclidean!geometry
Home
Index