Nuprl Lemma : eu-cong-angle_wf

[e:EuclideanPlane]. ∀[a,b,c,x,y,z:Point].  (abc xyz ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-cong-angle: abc xyz euclidean-plane: EuclideanPlane eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-cong-angle: abc xyz prop: and: P ∧ Q euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  not_wf equal_wf eu-point_wf exists_wf eu-between-eq_wf eu-congruent_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c,x,y,z:Point].    (abc  =  xyz  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_41_50
Last ObjectModification: 2015_12_28-AM-09_23_09

Theory : euclidean!geometry


Home Index