Nuprl Lemma : eu-eq-implies-col

e:EuclideanPlane. ∀a,b,c:Point.  ((¬(a b ∈ Point))  (b c ∈ Point)  Colinear(a;b;c))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B not: ¬A false: False
Lemmas referenced :  equal_wf eu-point_wf not_wf euclidean-plane_wf eu-colinear-def eu-between_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination productElimination independent_functionElimination independent_pairFormation equalitySymmetry voidElimination productEquality because_Cache

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    ((\mneg{}(a  =  b))  {}\mRightarrow{}  (b  =  c)  {}\mRightarrow{}  Colinear(a;b;c))



Date html generated: 2016_05_18-AM-06_45_43
Last ObjectModification: 2015_12_28-AM-09_22_07

Theory : euclidean!geometry


Home Index