Nuprl Lemma : eu-exists-middle

e:EuclideanPlane. ∀a,b:Point. ∀c:{p:Point| ¬Colinear(a;b;p)} .  ∃m:Point. ((m middle(a;b;c) ∈ Point) ∧ am=bm ∧ am=cm)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-middle: middle(a;b;c) eu-colinear: Colinear(a;b;c) eu-congruent: ab=cd eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] euclidean-plane: EuclideanPlane member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T euclidean-axioms: euclidean-axioms(e) and: P ∧ Q cand: c∧ B let: let
Lemmas referenced :  sq_stable__eu-congruent sq_stable__equal sq_stable__and eu-congruent_wf equal_wf and_wf eu-middle_wf euclidean-plane_wf eu-colinear_wf not_wf eu-point_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_pairFormation isect_memberEquality independent_functionElimination because_Cache dependent_functionElimination introduction imageMemberEquality baseClosed imageElimination productElimination independent_pairFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{p:Point|  \mneg{}Colinear(a;b;p)\}  .
    \mexists{}m:Point.  ((m  =  middle(a;b;c))  \mwedge{}  am=bm  \mwedge{}  am=cm)



Date html generated: 2016_05_18-AM-06_35_41
Last ObjectModification: 2016_01_16-PM-10_30_46

Theory : euclidean!geometry


Home Index