Nuprl Lemma : eu-exists-middle
∀e:EuclideanPlane. ∀a,b:Point. ∀c:{p:Point| ¬Colinear(a;b;p)} .  ∃m:Point. ((m = middle(a;b;c) ∈ Point) ∧ am=bm ∧ am=cm)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-middle: middle(a;b;c)
, 
eu-colinear: Colinear(a;b;c)
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
euclidean-plane: EuclideanPlane
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
euclidean-axioms: euclidean-axioms(e)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
let: let
Lemmas referenced : 
sq_stable__eu-congruent, 
sq_stable__equal, 
sq_stable__and, 
eu-congruent_wf, 
equal_wf, 
and_wf, 
eu-middle_wf, 
euclidean-plane_wf, 
eu-colinear_wf, 
not_wf, 
eu-point_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_pairFormation, 
isect_memberEquality, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{p:Point|  \mneg{}Colinear(a;b;p)\}  .
    \mexists{}m:Point.  ((m  =  middle(a;b;c))  \mwedge{}  am=bm  \mwedge{}  am=cm)
Date html generated:
2016_05_18-AM-06_35_41
Last ObjectModification:
2016_01_16-PM-10_30_46
Theory : euclidean!geometry
Home
Index