Nuprl Lemma : eu-inner-pasch-ex

e:EuclideanPlane. ∀a,b:Point. ∀c:{c:Point| ¬Colinear(a;b;c)} . ∀p:{p:Point| a-p-c} . ∀q:{q:Point| b_q_c} .
  ∃x:Point. (p-x-b ∧ q-x-a ∧ (x eu-inner-pasch(e;a;b;c;p;q) ∈ Point))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-inner-pasch: eu-inner-pasch(e;a;b;c;p;q) eu-between-eq: a_b_c eu-colinear: Colinear(a;b;c) eu-between: a-b-c eu-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] and: P ∧ Q cand: c∧ B
Lemmas referenced :  set_wf eu-point_wf eu-between-eq_wf eu-between_wf not_wf eu-colinear_wf euclidean-plane_wf eu-inner-pasch_wf eu-inner-pasch-property and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_pairFormation dependent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  \mneg{}Colinear(a;b;c)\}  .  \mforall{}p:\{p:Point|  a-p-c\}  .  \mforall{}q:\{q:Point| 
                                                                                                                                                                                b\_q\_c\}  .
    \mexists{}x:Point.  (p-x-b  \mwedge{}  q-x-a  \mwedge{}  (x  =  eu-inner-pasch(e;a;b;c;p;q)))



Date html generated: 2016_05_18-AM-06_45_29
Last ObjectModification: 2015_12_28-AM-09_21_57

Theory : euclidean!geometry


Home Index