Nuprl Lemma : eu-perp-in_wf

[e:EuclideanPlane]. ∀[x,a,b,c,d:Point].  (Perp-in(x; ab; cd) ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-perp-in: Perp-in(x; ab; cd) euclidean-plane: EuclideanPlane eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-perp-in: Perp-in(x; ab; cd) prop: and: P ∧ Q euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  eu-colinear_wf all_wf eu-point_wf eu-perpendicular_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x,a,b,c,d:Point].    (Perp-in(x;  ab;  cd)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_43_17
Last ObjectModification: 2015_12_28-AM-09_22_35

Theory : euclidean!geometry


Home Index