Nuprl Lemma : eu-seg-congruent-equiv
∀e:EuclideanPlane. EquivRel(Segment;s,t.s ≡ t)
Proof
Definitions occuring in Statement : 
eu-seg-congruent: s1 ≡ s2
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
euclidean-plane: EuclideanPlane
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
eu-seg-congruent_weakening, 
eu-segment_wf, 
eu-seg-congruent_symmetry, 
eu-seg-congruent_wf, 
euclidean-plane_wf, 
eu-seg-congruent_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality
Latex:
\mforall{}e:EuclideanPlane.  EquivRel(Segment;s,t.s  \mequiv{}  t)
Date html generated:
2016_05_18-AM-06_36_52
Last ObjectModification:
2015_12_28-AM-09_25_40
Theory : euclidean!geometry
Home
Index