Nuprl Lemma : eu-seg-congruent_weakening
∀e:EuclideanPlane. ∀[s1,s2:Segment].  s1 ≡ s2 supposing s1 = s2 ∈ Segment
Proof
Definitions occuring in Statement : 
eu-seg-congruent: s1 ≡ s2
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
eu-seg-congruent: s1 ≡ s2
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
Lemmas referenced : 
eu-congruent-refl, 
eu-seg1_wf, 
eu-seg2_wf, 
eu-congruent_wf, 
equal_wf, 
eu-segment_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
setElimination, 
because_Cache, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
sqequalRule
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[s1,s2:Segment].    s1  \mequiv{}  s2  supposing  s1  =  s2
Date html generated:
2016_10_26-AM-07_41_28
Last ObjectModification:
2016_07_12-AM-08_07_34
Theory : euclidean!geometry
Home
Index