Nuprl Lemma : eu-seg-congruent_weakening

e:EuclideanPlane. ∀[s1,s2:Segment].  s1 ≡ s2 supposing s1 s2 ∈ Segment


Proof




Definitions occuring in Statement :  eu-seg-congruent: s1 ≡ s2 eu-segment: Segment euclidean-plane: EuclideanPlane uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T eu-seg-congruent: s1 ≡ s2 euclidean-plane: EuclideanPlane prop:
Lemmas referenced :  eu-congruent-refl eu-seg1_wf eu-seg2_wf eu-congruent_wf equal_wf eu-segment_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction axiomEquality hypothesis thin rename extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality isectElimination setElimination because_Cache hyp_replacement equalitySymmetry Error :applyLambdaEquality,  sqequalRule

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[s1,s2:Segment].    s1  \mequiv{}  s2  supposing  s1  =  s2



Date html generated: 2016_10_26-AM-07_41_28
Last ObjectModification: 2016_07_12-AM-08_07_34

Theory : euclidean!geometry


Home Index