Nuprl Lemma : Dcong-iff-cong
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (Dcong(g;a;b;c;d) 
⇐⇒ ab ≅ cd)
Proof
Definitions occuring in Statement : 
dist-cong: Dcong(g;a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
not: ¬A
, 
euclidean-plane: EuclideanPlane
, 
dist-cong: Dcong(g;a;b;c;d)
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
false: False
Lemmas referenced : 
dist-cong_wf, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
not-dist-cong, 
dist_wf, 
dist-lemma-lt-2, 
not-lt-and-eq, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-congruent-iff-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
setElimination, 
rename, 
productElimination, 
voidElimination, 
equalitySymmetry
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (Dcong(g;a;b;c;d)  \mLeftarrow{}{}\mRightarrow{}  ab  \mcong{}  cd)
Date html generated:
2019_10_16-PM-02_55_38
Last ObjectModification:
2019_06_05-PM-03_13_09
Theory : euclidean!plane!geometry
Home
Index