Nuprl Lemma : Dcong-iff-cong

g:EuclideanPlane. ∀a,b,c,d:Point.  (Dcong(g;a;b;c;d) ⇐⇒ ab ≅ cd)


Proof




Definitions occuring in Statement :  dist-cong: Dcong(g;a;b;c;d) euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a cand: c∧ B not: ¬A euclidean-plane: EuclideanPlane dist-cong: Dcong(g;a;b;c;d) basic-geometry: BasicGeometry uiff: uiff(P;Q) false: False
Lemmas referenced :  dist-cong_wf geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf not-dist-cong dist_wf dist-lemma-lt-2 not-lt-and-eq geo-length_wf geo-mk-seg_wf geo-congruent-iff-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType because_Cache dependent_functionElimination independent_functionElimination setElimination rename productElimination voidElimination equalitySymmetry

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (Dcong(g;a;b;c;d)  \mLeftarrow{}{}\mRightarrow{}  ab  \mcong{}  cd)



Date html generated: 2019_10_16-PM-02_55_38
Last ObjectModification: 2019_06_05-PM-03_13_09

Theory : euclidean!plane!geometry


Home Index