Nuprl Lemma : dist-cong_wf

[g1:EuclideanPlane]. ∀[a,b,c,d:Point].  (Dcong(g1;a;b;c;d) ∈ ℙ)


Proof




Definitions occuring in Statement :  dist-cong: Dcong(g;a;b;c;d) euclidean-plane: EuclideanPlane geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dist-cong: Dcong(g;a;b;c;d) prop: and: P ∧ Q euclidean-plane: EuclideanPlane subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  not_wf dist_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt universeIsType applyEquality instantiate independent_isectElimination

Latex:
\mforall{}[g1:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (Dcong(g1;a;b;c;d)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-02_47_13
Last ObjectModification: 2018_10_02-AM-11_12_39

Theory : euclidean!plane!geometry


Home Index