Nuprl Lemma : dist-cong_wf
∀[g1:EuclideanPlane]. ∀[a,b,c,d:Point].  (Dcong(g1;a;b;c;d) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dist-cong: Dcong(g;a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dist-cong: Dcong(g;a;b;c;d)
, 
prop: ℙ
, 
and: P ∧ Q
, 
euclidean-plane: EuclideanPlane
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
not_wf, 
dist_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
universeIsType, 
applyEquality, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}[g1:EuclideanPlane].  \mforall{}[a,b,c,d:Point].    (Dcong(g1;a;b;c;d)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-PM-02_47_13
Last ObjectModification:
2018_10_02-AM-11_12_39
Theory : euclidean!plane!geometry
Home
Index