Nuprl Lemma : Euclid-Prop1

e:EuclideanPlane. ∀a,b:Point.  (a ≠  (∃c:Point. EQΔ(c;b;a)))


Proof




Definitions occuring in Statement :  geo-equilateral: EQΔ(a;b;c) euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a euclidean-plane: EuclideanPlane squash: T guard: {T} sq_stable: SqStable(P) cand: c∧ B and: P ∧ Q geo-equilateral: EQΔ(a;b;c) exists: x:A. B[x] sq_exists: x:A [B[x]] prop: subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  sq_stable__geo-congruent geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-equilateral_wf lsep-all-sym2 sq_stable__geo-lsep geo-sep_wf Euclid-Prop1-left-ext
Rules used in proof :  independent_isectElimination instantiate imageElimination baseClosed imageMemberEquality independent_functionElimination productElimination independent_pairFormation dependent_pairFormation rename setElimination sqequalRule applyEquality isectElimination hypothesis because_Cache dependent_set_memberEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}c:Point.  EQ\mDelta{}(c;b;a)))



Date html generated: 2018_05_22-AM-11_55_08
Last ObjectModification: 2018_05_21-AM-01_14_01

Theory : euclidean!plane!geometry


Home Index