Nuprl Lemma : Euclid-Prop9-ext
∀e:EuclideanPlane. ∀a,b:Point. ∀c:{c:Point| c # ba} .  ∃f:Point. acf ≅a bcf
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
member: t ∈ T
, 
record-select: r.x
, 
Euclid-Prop9, 
geo-extend-exists, 
sq_stable__geo-lsep, 
Euclid-Prop10, 
geo-sep-sym, 
sq_stable__geo-sep, 
geo-between-trivial, 
geo-congruent-iff-length, 
geo-congruent-refl, 
Euclid-midpoint, 
sq_stable__and, 
sq_stable__geo-between, 
sq_stable__geo-congruent, 
basic-geo-sep-sym, 
sq_stable__geo-axioms, 
sq_stable__geo-gt-prim, 
geo-seg-congruent-iff-length, 
geo-cong-preserves-gt-prim, 
sq_stable-geo-axioms-if, 
any: any x
, 
stable-implies-sq_stable, 
stable__geo-between, 
sq_stable__all
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ba\}  .    \mexists{}f:Point.  acf  \mcong{}\msuba{}  bcf
Date html generated:
2020_05_20-AM-10_03_18
Last ObjectModification:
2020_01_27-PM-07_13_36
Theory : euclidean!plane!geometry
Home
Index