Nuprl Lemma : Euclid-Prop9
∀e:EuclideanPlane. ∀a,b:Point. ∀c:{c:Point| c # ba} .  ∃f:Point. acf ≅a bcf
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
true: True
, 
cand: A c∧ B
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
sq_exists: ∃x:A [B[x]]
, 
oriented-plane: OrientedPlane
, 
geo-cong-angle: abc ≅a xyz
Lemmas referenced : 
sq_stable__geo-lsep, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
lsep-implies-sep, 
geo-extend-exists, 
geo-congruent-iff-length, 
geo-add-length-between, 
geo-add-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
geo-add-length-comm, 
colinear-lsep-cycle, 
lsep-all-sym, 
geo-sep-sym, 
geo-between-sep, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
istype-false, 
istype-le, 
istype-less_than, 
Euclid-Prop10, 
geo-sep_wf, 
geo-cong-angle_wf, 
sq_stable__geo-sep, 
colinear-lsep', 
geo-strict-between-sep2, 
geo-strict-between-implies-colinear, 
geo-between-trivial, 
geo-congruent-refl, 
geo-length-flip, 
geo-between_wf, 
geo-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
setElimination, 
thin, 
rename, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setIsType, 
inhabitedIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
productElimination, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
dependent_pairFormation_alt
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  ba\}  .    \mexists{}f:Point.  acf  \mcong{}\msuba{}  bcf
Date html generated:
2019_10_16-PM-01_41_36
Last ObjectModification:
2018_11_07-PM-01_00_09
Theory : euclidean!plane!geometry
Home
Index