Nuprl Lemma : circle-not-colinear

e:EuclideanPlane. ∀a,b,c,d:Point.  (ab ≅ ac  ab ≅ ad  b ≠  c ≠  d ≠  Colinear(b;c;d)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: and: P ∧ Q cand: c∧ B basic-geometry: BasicGeometry uiff: uiff(P;Q) uimplies: supposing a guard: {T}
Lemmas referenced :  no-three-colinear-on-circle geo-sep-sym geo-sep_wf geo-colinear_wf geo-congruent-iff-length euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-congruent_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis dependent_set_memberEquality because_Cache applyEquality sqequalRule independent_pairFormation productEquality productElimination independent_isectElimination equalityTransitivity equalitySymmetry voidElimination instantiate

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (ab  \mcong{}  ac  {}\mRightarrow{}  ab  \mcong{}  ad  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  c  \mneq{}  d  {}\mRightarrow{}  d  \mneq{}  b  {}\mRightarrow{}  (\mneg{}Colinear(b;c;d)))



Date html generated: 2018_05_22-PM-00_12_26
Last ObjectModification: 2018_03_30-PM-09_23_36

Theory : euclidean!plane!geometry


Home Index