Nuprl Lemma : circle-not-colinear
∀e:EuclideanPlane. ∀a,b,c,d:Point.  (ab ≅ ac 
⇒ ab ≅ ad 
⇒ b ≠ c 
⇒ c ≠ d 
⇒ d ≠ b 
⇒ (¬Colinear(b;c;d)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
no-three-colinear-on-circle, 
geo-sep-sym, 
geo-sep_wf, 
geo-colinear_wf, 
geo-congruent-iff-length, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
dependent_set_memberEquality, 
because_Cache, 
applyEquality, 
sqequalRule, 
independent_pairFormation, 
productEquality, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
instantiate
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (ab  \mcong{}  ac  {}\mRightarrow{}  ab  \mcong{}  ad  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  c  \mneq{}  d  {}\mRightarrow{}  d  \mneq{}  b  {}\mRightarrow{}  (\mneg{}Colinear(b;c;d)))
Date html generated:
2018_05_22-PM-00_12_26
Last ObjectModification:
2018_03_30-PM-09_23_36
Theory : euclidean!plane!geometry
Home
Index