Nuprl Lemma : no-three-colinear-on-circle

[e:EuclideanPlane]. ∀[a:Point]. ∀[b:{b:Point| b ≠ a} ]. ∀[c:{c:Point| c ≠ a ∧ c ≠ b ∧ Colinear(a;b;c)} ].
  ∀p:Point. (pa ≅ pb ∧ pb ≅ pc))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] stable: Stable{P} or: P ∨ Q sq_exists: x:A [B[x]] cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m iff: ⇐⇒ Q rev_implies:  Q geo-eq: a ≡ b oriented-plane: OrientedPlane exists: x:A. B[x] geo-midpoint: a=m=b append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] basic-geometry: BasicGeometry geo-perp: ab ⊥ cd
Lemmas referenced :  geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf set_wf geo-sep_wf geo-colinear_wf stable__false false_wf or_wf geo-lsep_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle Euclid-midpoint geo-sep-sym midpoint-of-equidistant-points-is-perp colinear-lsep-cycle lsep-all-sym geo-colinear-is-colinear-set length_of_cons_lemma length_of_nil_lemma lelt_wf not-lsep-iff-colinear oriented-colinear-append cons_wf nil_wf cons_member l_member_wf equal_wf exists_wf geo-between-implies-colinear list_ind_cons_lemma list_ind_nil_lemma geo-colinear_functionality geo-eq_weakening geo-perp-unicity geo-perp-in_wf geo-perp-symmetry geo-perp-symmetry2 geo-perp-colinear geo-between_wf geo-between_functionality geo-eq_inversion geo-congruent_functionality seg-midpoints-equal-flip colinear-implies-midpoint
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin setElimination rename sqequalHypSubstitution productElimination hypothesis because_Cache independent_functionElimination voidElimination productEquality extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality functionEquality unionElimination dependent_set_memberEquality voidEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed addLevel impliesFunctionality dependent_pairFormation inrFormation inlFormation

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a:Point].  \mforall{}[b:\{b:Point|  b  \mneq{}  a\}  ].  \mforall{}[c:\{c:Point| 
                                                                                                                          c  \mneq{}  a  \mwedge{}  c  \mneq{}  b  \mwedge{}  Colinear(a;b;c)\}  ].
    \mforall{}p:Point.  (\mneg{}(pa  \mcong{}  pb  \mwedge{}  pb  \mcong{}  pc))



Date html generated: 2018_05_22-PM-00_10_20
Last ObjectModification: 2018_05_11-PM-06_48_20

Theory : euclidean!plane!geometry


Home Index