Nuprl Lemma : colinear-implies-congruent_or_midpoint

e:BasicGeometry. ∀M,A,B:Point.  (Colinear(A;M;B)  MA ≅ MB  (¬¬(A ≡ B ∨ A=M=B)))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-midpoint: a=m=b geo-colinear: Colinear(a;b;c) geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a stable: Stable{P} or: P ∨ Q geo-eq: a ≡ b
Lemmas referenced :  not_wf or_wf geo-eq_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-midpoint_wf geo-congruent_wf geo-colinear_wf geo-point_wf stable__false false_wf geo-sep_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle colinear-implies-midpoint Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination introduction extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache functionEquality unionElimination inlFormation dependent_functionElimination inrFormation

Latex:
\mforall{}e:BasicGeometry.  \mforall{}M,A,B:Point.    (Colinear(A;M;B)  {}\mRightarrow{}  MA  \mcong{}  MB  {}\mRightarrow{}  (\mneg{}\mneg{}(A  \mequiv{}  B  \mvee{}  A=M=B)))



Date html generated: 2018_05_22-PM-00_01_53
Last ObjectModification: 2018_03_27-PM-02_13_08

Theory : euclidean!plane!geometry


Home Index