Nuprl Lemma : dist-axiomsA_wf

[g:EuclideanPlane]. (dist-axiomsA(g) ∈ ℙ)


Proof




Definitions occuring in Statement :  dist-axiomsA: dist-axiomsA(g) euclidean-plane: EuclideanPlane uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dist-axiomsA: dist-axiomsA(g) prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x] or: P ∨ Q
Lemmas referenced :  all_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf dist_wf not_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination lambdaEquality because_Cache functionEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:EuclideanPlane].  (dist-axiomsA(g)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-02_44_48
Last ObjectModification: 2018_09_14-PM-08_40_31

Theory : euclidean!plane!geometry


Home Index