Nuprl Lemma : dist-lemma-le

g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (D(a;b;c;d;e;f)  |ef| ≤ |ab| |cd|)


Proof




Definitions occuring in Statement :  dist: D(a;b;c;d;e;f) geo-le: p ≤ q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q dist: D(a;b;c;d;e;f) exists: x:A. B[x] and: P ∧ Q member: t ∈ T basic-geometry: BasicGeometry uall: [x:A]. B[x] uiff: uiff(P;Q) uimplies: supposing a squash: T euclidean-plane: EuclideanPlane true: True subtype_rel: A ⊆B prop: guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  geo-add-length-between-iff geo-le-from-be geo-le_wf geo-length_wf geo-mk-seg_wf subtype_rel_self iff_weakening_equal geo-congruent-iff-length geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf dist_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination sqequalRule hypothesisEquality isectElimination hypothesis independent_isectElimination setElimination rename applyEquality lambdaEquality_alt imageElimination because_Cache universeIsType inhabitedIsType equalitySymmetry natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality equalityTransitivity independent_functionElimination hyp_replacement

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (D(a;b;c;d;e;f)  {}\mRightarrow{}  |ef|  \mleq{}  |ab|  +  |cd|)



Date html generated: 2019_10_16-PM-02_48_27
Last ObjectModification: 2018_10_02-PM-02_29_06

Theory : euclidean!plane!geometry


Home Index