Nuprl Lemma : dist-lemma-le
∀g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (D(a;b;c;d;e;f) 
⇒ |ef| ≤ |ab| + |cd|)
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f)
, 
geo-le: p ≤ q
, 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dist: D(a;b;c;d;e;f)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
euclidean-plane: EuclideanPlane
, 
true: True
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
geo-add-length-between-iff, 
geo-le-from-be, 
geo-le_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-congruent-iff-length, 
geo-add-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
dist_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_isectElimination, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
equalityTransitivity, 
independent_functionElimination, 
hyp_replacement
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (D(a;b;c;d;e;f)  {}\mRightarrow{}  |ef|  \mleq{}  |ab|  +  |cd|)
Date html generated:
2019_10_16-PM-02_48_27
Last ObjectModification:
2018_10_02-PM-02_29_06
Theory : euclidean!plane!geometry
Home
Index