Nuprl Lemma : geo-bet-or
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (((a_b_c ∧ a_b_d) ∧ a ≠ b) 
⇒ (¬¬(b_c_d ∨ b_d_c)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
and: P ∧ Q
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
basic-geometry-: BasicGeometry-
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
geo-between-same-side, 
geo-between-symmetry, 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-between_wf, 
not_wf, 
or_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
productElimination, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
inlFormation, 
because_Cache, 
applyEquality, 
voidElimination, 
independent_pairFormation, 
inrFormation, 
instantiate, 
productEquality
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (((a\_b\_c  \mwedge{}  a\_b\_d)  \mwedge{}  a  \mneq{}  b)  {}\mRightarrow{}  (\mneg{}\mneg{}(b\_c\_d  \mvee{}  b\_d\_c)))
Date html generated:
2019_10_16-PM-02_50_02
Last ObjectModification:
2018_09_20-AM-10_02_51
Theory : euclidean!plane!geometry
Home
Index