Nuprl Lemma : geo-bet-or

g:EuclideanPlane. ∀a,b,c,d:Point.  (((a_b_c ∧ a_b_d) ∧ a ≠ b)  (¬¬(b_c_d ∨ b_d_c)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T and: P ∧ Q basic-geometry: BasicGeometry uall: [x:A]. B[x] uimplies: supposing a cand: c∧ B or: P ∨ Q basic-geometry-: BasicGeometry- prop: subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  geo-between-same-side geo-between-symmetry geo-between-inner-trans geo-between-exchange3 geo-between_wf not_wf or_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination productElimination sqequalRule hypothesisEquality isectElimination independent_isectElimination hypothesis independent_functionElimination inlFormation because_Cache applyEquality voidElimination independent_pairFormation inrFormation instantiate productEquality

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (((a\_b\_c  \mwedge{}  a\_b\_d)  \mwedge{}  a  \mneq{}  b)  {}\mRightarrow{}  (\mneg{}\mneg{}(b\_c\_d  \mvee{}  b\_d\_c)))



Date html generated: 2019_10_16-PM-02_50_02
Last ObjectModification: 2018_09_20-AM-10_02_51

Theory : euclidean!plane!geometry


Home Index