Nuprl Lemma : geo-between-outer-trans-cpy

e:EuclideanPlane. ∀[a,b,c,d:Point].  (a_c_d) supposing (b_c_d and a_b_c and b ≠ c)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-between: a_b_c geo-sep: a ≠ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B guard: {T} prop: euclidean-plane: EuclideanPlane or: P ∨ Q implies:  Q exists: x:A. B[x] and: P ∧ Q not: ¬A false: False stable: Stable{P} geo-eq: a ≡ b iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-point_wf stable__geo-between false_wf not_wf extend-using-SC geo-construction-unicity2 geo-between-symmetry geo-between-inner-trans geo-congruent-symmetry istype-void geo-between-trivial2 minimal-double-negation-hyp-elim geo-between_functionality geo-eq_weakening minimal-not-not-excluded-middle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination setElimination rename unionEquality functionEquality independent_functionElimination productElimination functionIsType unionIsType unionElimination voidElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (a\_c\_d)  supposing  (b\_c\_d  and  a\_b\_c  and  b  \mneq{}  c)



Date html generated: 2019_10_16-PM-01_15_33
Last ObjectModification: 2019_01_17-PM-03_20_22

Theory : euclidean!plane!geometry


Home Index