Nuprl Lemma : geo-between-outer-trans-cpy
∀e:EuclideanPlane. ∀[a,b,c,d:Point].  (a_c_d) supposing (b_c_d and a_b_c and b ≠ c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
stable: Stable{P}
, 
geo-eq: a ≡ b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-point_wf, 
stable__geo-between, 
false_wf, 
not_wf, 
extend-using-SC, 
geo-construction-unicity2, 
geo-between-symmetry, 
geo-between-inner-trans, 
geo-congruent-symmetry, 
istype-void, 
geo-between-trivial2, 
minimal-double-negation-hyp-elim, 
geo-between_functionality, 
geo-eq_weakening, 
minimal-not-not-excluded-middle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
setElimination, 
rename, 
unionEquality, 
functionEquality, 
independent_functionElimination, 
productElimination, 
functionIsType, 
unionIsType, 
unionElimination, 
voidElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (a\_c\_d)  supposing  (b\_c\_d  and  a\_b\_c  and  b  \mneq{}  c)
Date html generated:
2019_10_16-PM-01_15_33
Last ObjectModification:
2019_01_17-PM-03_20_22
Theory : euclidean!plane!geometry
Home
Index