Nuprl Lemma : geo-construction-unicity2
∀e:EuclideanPlane. ∀[Q,A,X,Y:Point].  (X ≡ Y) supposing (AY ≅ AX and Q_A_X and Q_A_Y and Q ≠ A)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-eq: a ≡ b
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
geo-eq: a ≡ b
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-between_wf, 
geo-sep_wf, 
geo-point_wf, 
geo-congruent-refl, 
geo-congruent-symmetry, 
geo-five-segment, 
geo-three-segment, 
geo-congruence-identity-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
voidElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[Q,A,X,Y:Point].    (X  \mequiv{}  Y)  supposing  (AY  \mcong{}  AX  and  Q\_A\_X  and  Q\_A\_Y  and  Q  \mneq{}  A)
Date html generated:
2019_10_16-PM-01_15_27
Last ObjectModification:
2019_01_16-PM-02_58_48
Theory : euclidean!plane!geometry
Home
Index