Nuprl Lemma : geo-congruent-preserves-gt

e:BasicGeometry. ∀a,b,c,d,a',b',c',d':Point.  (ab > cd  ab ≅ a'b'  cd ≅ c'd'  a'b' > c'd')


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-gt: cd > ab geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-gt: cd > ab squash: T exists: x:A. B[x] and: P ∧ Q member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] uiff: uiff(P;Q) cand: c∧ B subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  geo-congruent-between-exists geo-sep-sym geo-congruent-iff-length geo-length-flip geo-between-symmetry geo-congruent-symmetry geo-congruent-sep geo-between_wf geo-congruent_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-gt_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution imageElimination introduction cut productElimination thin extract_by_obid dependent_functionElimination hypothesisEquality because_Cache independent_functionElimination hypothesis independent_isectElimination isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation_alt independent_pairFormation sqequalRule productIsType universeIsType applyEquality imageMemberEquality baseClosed instantiate inhabitedIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d,a',b',c',d':Point.    (ab  >  cd  {}\mRightarrow{}  ab  \mcong{}  a'b'  {}\mRightarrow{}  cd  \mcong{}  c'd'  {}\mRightarrow{}  a'b'  >  c'd')



Date html generated: 2019_10_16-PM-01_16_59
Last ObjectModification: 2019_02_15-AM-06_11_47

Theory : euclidean!plane!geometry


Home Index