Nuprl Lemma : geo-eq-preserves-col
∀g:EuclideanPlane. ∀a,b,x,y:Point.  (a ≡ b 
⇒ Colinear(a;x;y) 
⇒ Colinear(b;x;y))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-eq_weakening, 
geo-colinear_functionality, 
geo-point_wf, 
geo-eq_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-colinear_wf, 
geo-eq_inversion
Rules used in proof : 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
instantiate, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,x,y:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  Colinear(a;x;y)  {}\mRightarrow{}  Colinear(b;x;y))
Date html generated:
2018_05_22-AM-11_54_05
Last ObjectModification:
2018_05_21-AM-01_13_30
Theory : euclidean!plane!geometry
Home
Index