Nuprl Lemma : geo-eq-preserves-col

g:EuclideanPlane. ∀a,b,x,y:Point.  (a ≡  Colinear(a;x;y)  Colinear(b;x;y))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-eq: a ≡ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-eq_weakening geo-colinear_functionality geo-point_wf geo-eq_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-colinear_wf geo-eq_inversion
Rules used in proof :  productElimination independent_functionElimination dependent_functionElimination because_Cache sqequalRule instantiate applyEquality hypothesis independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,x,y:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  Colinear(a;x;y)  {}\mRightarrow{}  Colinear(b;x;y))



Date html generated: 2018_05_22-AM-11_54_05
Last ObjectModification: 2018_05_21-AM-01_13_30

Theory : euclidean!plane!geometry


Home Index