Nuprl Lemma : geo-incident-not-plsep
∀[e:EuclideanPlane]. ∀[x:Point]. ∀[m:Line].  ¬x # m supposing x I m
Proof
Definitions occuring in Statement : 
geo-plsep: p # l
, 
geo-incident: p I L
, 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
geo-line: Line
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
geo-plsep: p # l
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
geo-plsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-incident_wf, 
geoline-subtype1, 
geo-line_wf, 
geo-point_wf, 
geo-incident-line, 
geo-lsep_wf, 
not-lsep-iff-colinear
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x:Point].  \mforall{}[m:Line].    \mneg{}x  \#  m  supposing  x  I  m
Date html generated:
2018_05_22-PM-01_07_19
Last ObjectModification:
2018_05_19-PM-08_22_46
Theory : euclidean!plane!geometry
Home
Index