Nuprl Lemma : geo-inner-five-segment'
∀e:EuclideanPlane
  ∀[a,b,c,A,B,C:Point].
    (∀d,D:Point.  (bd ≅ BD) supposing (cd ≅ CD and ad ≅ AD)) supposing (bc ≅ BC and ac ≅ AC and A_B_C and a_b_c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
geo-inner-five-segment, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-between_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation, 
isectElimination, 
independent_isectElimination, 
applyEquality, 
instantiate, 
sqequalRule, 
because_Cache
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].
        (\mforall{}d,D:Point.    (bd  \00D0  BD)  supposing  (cd  \00D0  CD  and  ad  \00D0  AD))  supposing 
              (bc  \00D0  BC  and 
              ac  \00D0  AC  and 
              A\_B\_C  and 
              a\_b\_c)
Date html generated:
2017_10_02-PM-04_41_41
Last ObjectModification:
2017_08_10-PM-01_14_01
Theory : euclidean!plane!geometry
Home
Index