Nuprl Lemma : geo-inner-five-segment'

e:EuclideanPlane
  ∀[a,b,c,A,B,C:Point].
    (∀d,D:Point.  (bd ≅ BD) supposing (cd ≅ CD and ad ≅ AD)) supposing (bc ≅ BC and ac ≅ AC and A_B_C and a_b_c)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: a_b_c geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  geo-inner-five-segment geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-between_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation isectElimination independent_isectElimination applyEquality instantiate sqequalRule because_Cache

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].
        (\mforall{}d,D:Point.    (bd  \00D0  BD)  supposing  (cd  \00D0  CD  and  ad  \00D0  AD))  supposing 
              (bc  \00D0  BC  and 
              ac  \00D0  AC  and 
              A\_B\_C  and 
              a\_b\_c)



Date html generated: 2017_10_02-PM-04_41_41
Last ObjectModification: 2017_08_10-PM-01_14_01

Theory : euclidean!plane!geometry


Home Index