Nuprl Lemma : geo-isleft_wf

[g:EuclideanPlaneStructure]. ∀[a,b:Point]. ∀[c:{c:Point| bc} ].  (isleft(a;b;c) ∈ 𝔹)


Proof




Definitions occuring in Statement :  geo-isleft: isleft(a;b;c) euclidean-plane-structure: EuclideanPlaneStructure geo-lsep: bc geo-point: Point bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] or: P ∨ Q prop: subtype_rel: A ⊆B geo-isleft: isleft(a;b;c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  euclidean-plane-structure_wf euclidean-plane-structure-subtype geo-point_wf set_wf geo-lsep_wf geo-orientation_wf geo-left_wf isl_wf
Rules used in proof :  isect_memberEquality lambdaEquality equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality hypothesis because_Cache applyEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid sqequalRule rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:EuclideanPlaneStructure].  \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  a  \#  bc\}  ].    (isleft(a;b;c)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_02-PM-06_49_58
Last ObjectModification: 2017_08_06-PM-07_38_28

Theory : euclidean!plane!geometry


Home Index