Nuprl Lemma : geo-isleft_wf
∀[g:EuclideanPlaneStructure]. ∀[a,b:Point]. ∀[c:{c:Point| a # bc} ].  (isleft(a;b;c) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
geo-isleft: isleft(a;b;c)
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
geo-isleft: isleft(a;b;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
euclidean-plane-structure_wf, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
set_wf, 
geo-lsep_wf, 
geo-orientation_wf, 
geo-left_wf, 
isl_wf
Rules used in proof : 
isect_memberEquality, 
lambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_set_memberEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:EuclideanPlaneStructure].  \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  a  \#  bc\}  ].    (isleft(a;b;c)  \mmember{}  \mBbbB{})
Date html generated:
2017_10_02-PM-06_49_58
Last ObjectModification:
2017_08_06-PM-07_38_28
Theory : euclidean!plane!geometry
Home
Index