Nuprl Lemma : geo-orientation_wf
∀[g:EuclideanPlaneStructure]. ∀[a,b:Point]. ∀[c:{c:Point| a # bc} ].
  (geo-orientation(g;a;b;c) ∈ a leftof bc ∨ a leftof cb)
Proof
Definitions occuring in Statement : 
geo-orientation: geo-orientation(g;a;b;c)
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-lsep: a # bc
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
geo-orientation: geo-orientation(g;a;b;c)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
geo-lsep: a # bc
, 
squash: ↓T
, 
it: ⋅
Lemmas referenced : 
euclidean-plane-structure_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
set_wf, 
geo-gt_wf, 
geo-ge_wf, 
geo-colinear_wf, 
sq_exists_wf, 
exists_wf, 
or_wf, 
geo-left_wf, 
geo-sep_wf, 
sq_stable_wf, 
all_wf, 
geo-congruent_wf, 
geo-between_wf, 
stable_wf, 
geo-point_wf, 
uall_wf, 
subtype_rel_self
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionExtensionality, 
functionEquality, 
productElimination, 
productEquality, 
lambdaFormation, 
because_Cache, 
setEquality, 
lambdaEquality, 
isectElimination, 
extract_by_obid, 
tokenEquality, 
applyEquality, 
hypothesis, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
hypothesisEquality, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
imageMemberEquality
Latex:
\mforall{}[g:EuclideanPlaneStructure].  \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  a  \#  bc\}  ].
    (geo-orientation(g;a;b;c)  \mmember{}  a  leftof  bc  \mvee{}  a  leftof  cb)
Date html generated:
2017_10_02-PM-06_49_44
Last ObjectModification:
2017_08_06-PM-07_38_12
Theory : euclidean!plane!geometry
Home
Index