Nuprl Lemma : geo-length-property

g:EuclideanPlane. ∀a,b:Point.  ab ≅ X|ab|


Proof




Definitions occuring in Statement :  geo-length: |s| geo-mk-seg: ab geo-X: X euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] geo-length: |s| member: t ∈ T top: Top euclidean-plane: EuclideanPlane uall: [x:A]. B[x] subtype_rel: A ⊆B prop: implies:  Q basic-geometry: BasicGeometry uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_stable: SqStable(P) squash: T guard: {T}
Lemmas referenced :  geo_seg1_mk_seg_lemma istype-void geo_seg2_mk_seg_lemma geo-extend_wf geo-O_wf geo-sep-O-X geo-X_wf geo-sep_wf geo-congruent-iff-length sq_stable__geo-congruent geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis hypothesisEquality setElimination rename because_Cache dependent_set_memberEquality_alt universeIsType isectElimination applyEquality inhabitedIsType productElimination independent_isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination equalitySymmetry equalityIstype equalityTransitivity instantiate

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b:Point.    ab  \mcong{}  X|ab|



Date html generated: 2019_10_16-PM-01_33_16
Last ObjectModification: 2019_02_18-PM-07_39_45

Theory : euclidean!plane!geometry


Home Index