Nuprl Lemma : geo-length-property
∀g:EuclideanPlane. ∀a,b:Point.  ab ≅ X|ab|
Proof
Definitions occuring in Statement : 
geo-length: |s|
, 
geo-mk-seg: ab
, 
geo-X: X
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
geo-length: |s|
, 
member: t ∈ T
, 
top: Top
, 
euclidean-plane: EuclideanPlane
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
Lemmas referenced : 
geo_seg1_mk_seg_lemma, 
istype-void, 
geo_seg2_mk_seg_lemma, 
geo-extend_wf, 
geo-O_wf, 
geo-sep-O-X, 
geo-X_wf, 
geo-sep_wf, 
geo-congruent-iff-length, 
sq_stable__geo-congruent, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
dependent_set_memberEquality_alt, 
universeIsType, 
isectElimination, 
applyEquality, 
inhabitedIsType, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalitySymmetry, 
equalityIstype, 
equalityTransitivity, 
instantiate
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b:Point.    ab  \mcong{}  X|ab|
Date html generated:
2019_10_16-PM-01_33_16
Last ObjectModification:
2019_02_18-PM-07_39_45
Theory : euclidean!plane!geometry
Home
Index