Nuprl Lemma : geo-line-from-points
∀e:EuclideanPlane. ∀a,b:Point.  (a ≠ b 
⇒ (∃l:Line. (a ≡ fst(l) ∧ b ≡ fst(snd(l)))))
Proof
Definitions occuring in Statement : 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
geo-eq: a ≡ b
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
pi2: snd(t)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
geo-line: Line
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable__geo-eq, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
exists_wf, 
geo-sep_wf, 
geo-eq_wf, 
geo-eq_weakening
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
independent_pairFormation, 
productEquality, 
dependent_pairEquality, 
productElimination, 
lambdaEquality, 
instantiate, 
setEquality, 
rename, 
setElimination, 
sqequalRule, 
applyEquality, 
dependent_set_memberEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
dependent_pairFormation, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}l:Line.  (a  \mequiv{}  fst(l)  \mwedge{}  b  \mequiv{}  fst(snd(l)))))
Date html generated:
2018_05_22-PM-01_00_47
Last ObjectModification:
2018_01_16-PM-03_45_42
Theory : euclidean!plane!geometry
Home
Index