Nuprl Lemma : geo-lt-iff-strict-between

g:EuclideanPlane. ∀s1,s2:geo-segment(g).  (|s1| < |s2| ⇐⇒ X_|s1|_|s2| ∧ |s1| ≠ |s2|)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-segment: geo-segment(e) geo-X: X euclidean-plane: EuclideanPlane geo-between: a_b_c geo-sep: a ≠ b all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane
Lemmas referenced :  geo-lt-iff-strict-between-points geo-length_wf1 geo-le-iff-between geo-lt_wf geo-length_wf geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-X_wf geo-sep_wf geo-segment_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination sqequalRule hypothesis productElimination independent_functionElimination independent_pairFormation promote_hyp universeIsType productIsType applyEquality instantiate independent_isectElimination setElimination rename lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}s1,s2:geo-segment(g).    (|s1|  <  |s2|  \mLeftarrow{}{}\mRightarrow{}  X\_|s1|\_|s2|  \mwedge{}  |s1|  \mneq{}  |s2|)



Date html generated: 2019_10_16-PM-01_34_40
Last ObjectModification: 2018_10_03-AM-11_10_37

Theory : euclidean!plane!geometry


Home Index