Nuprl Lemma : geo-lt-iff-strict-between
∀g:EuclideanPlane. ∀s1,s2:geo-segment(g).  (|s1| < |s2| 
⇐⇒ X_|s1|_|s2| ∧ |s1| ≠ |s2|)
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-length: |s|
, 
geo-segment: geo-segment(e)
, 
geo-X: X
, 
euclidean-plane: EuclideanPlane
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
geo-lt-iff-strict-between-points, 
geo-length_wf1, 
geo-le-iff-between, 
geo-lt_wf, 
geo-length_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-X_wf, 
geo-sep_wf, 
geo-segment_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
hypothesis, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
promote_hyp, 
universeIsType, 
productIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}s1,s2:geo-segment(g).    (|s1|  <  |s2|  \mLeftarrow{}{}\mRightarrow{}  X\_|s1|\_|s2|  \mwedge{}  |s1|  \mneq{}  |s2|)
Date html generated:
2019_10_16-PM-01_34_40
Last ObjectModification:
2018_10_03-AM-11_10_37
Theory : euclidean!plane!geometry
Home
Index