Nuprl Lemma : geo-lt-implies-point

e:EuclideanPlane. ∀a,b,c,d:Point.  (|ab| < |cd|  a ≠  (∃f:Point. (a-b-f ∧ af ≅ cd)))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q basic-geometry: BasicGeometry cand: c∧ B uall: [x:A]. B[x] uiff: uiff(P;Q) uimplies: supposing a squash: T prop: true: True basic-geometry-: BasicGeometry- subtype_rel: A ⊆B guard: {T} euclidean-plane: EuclideanPlane
Lemmas referenced :  geo-lt-implies-gt-strong-1 geo-proper-extend-exists geo-congruent-iff-length geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-between-symmetry geo-strict-between-implies-between geo-strict-between_wf geo-congruent_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lt_wf geo-length_wf geo-mk-seg_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination sqequalRule because_Cache rename dependent_pairFormation_alt independent_pairFormation isectElimination independent_isectElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType inhabitedIsType natural_numberEquality imageMemberEquality baseClosed productIsType instantiate setElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (|ab|  <  |cd|  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  (\mexists{}f:Point.  (a-b-f  \mwedge{}  af  \mcong{}  cd)))



Date html generated: 2019_10_16-PM-01_37_01
Last ObjectModification: 2019_08_07-PM-03_17_52

Theory : euclidean!plane!geometry


Home Index