Nuprl Lemma : geo-parallel-right-comm

e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel(e;a;b;c;d)  geo-parallel(e;a;b;d;c))


Proof




Definitions occuring in Statement :  geo-parallel: geo-parallel(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-parallel: geo-parallel(e;a;b;c;d) and: P ∧ Q cand: c∧ B member: t ∈ T guard: {T} prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  geo-sep-sym lsep-all-sym geo-colinear_wf geo-parallel_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation cut hypothesis introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination because_Cache isectElimination applyEquality sqequalRule instantiate independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (geo-parallel(e;a;b;c;d)  {}\mRightarrow{}  geo-parallel(e;a;b;d;c))



Date html generated: 2018_05_22-PM-00_13_40
Last ObjectModification: 2017_10_12-AM-11_26_49

Theory : euclidean!plane!geometry


Home Index