Nuprl Lemma : geo-parallel-strict

e:EuclideanPlane. ∀a,b:Point.  (geo-parallel(e;a;b;a;b)  False)


Proof




Definitions occuring in Statement :  geo-parallel: geo-parallel(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q false: False
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q false: False geo-parallel: geo-parallel(e;a;b;c;d) and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry uimplies: supposing a guard: {T} prop: subtype_rel: A ⊆B geo-eq: a ≡ b not: ¬A
Lemmas referenced :  geo-colinear-same geo-eq_weakening lsep-implies-sep geo-parallel_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination introduction extract_by_obid isectElimination sqequalRule because_Cache independent_isectElimination applyEquality instantiate

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (geo-parallel(e;a;b;a;b)  {}\mRightarrow{}  False)



Date html generated: 2018_05_22-PM-00_14_31
Last ObjectModification: 2017_10_12-PM-01_57_29

Theory : euclidean!plane!geometry


Home Index