Nuprl Lemma : geo-pt-swap-preserves-parallel

e:EuclideanPlane. ∀a,b,c,d:Point. ∀A:a ≠ b. ∀C:c ≠ d. ∀A':b ≠ a.  (<a, b, A> || <c, d, C>  <b, a, A'> || <c, d, C>)


Proof




Definitions occuring in Statement :  geo-Aparallel: || m euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q pair: <a, b>
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T squash: T uall: [x:A]. B[x] prop: geo-line: Line subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q geoline: LINE so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) basic-geometry: BasicGeometry
Lemmas referenced :  geo-Aparallel_wf squash_wf true_wf geoline_wf trivial-equal geo-sep_wf geo-point_wf geoline-subtype1 iff_weakening_equal euclidean-plane_wf quotient-member-eq geo-line_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane-structure_wf geo-primitives_wf geo-line-eq_wf geo-line-eq-equiv geo-colinear-line-eq2 geo-colinear-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache sqequalRule dependent_pairEquality productEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination dependent_functionElimination instantiate

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.  \mforall{}A:a  \mneq{}  b.  \mforall{}C:c  \mneq{}  d.  \mforall{}A':b  \mneq{}  a.
    (<a,  b,  A>  ||  <c,  d,  C>  {}\mRightarrow{}  <b,  a,  A'>  ||  <c,  d,  C>)



Date html generated: 2018_05_22-PM-01_18_48
Last ObjectModification: 2018_05_11-PM-06_53_57

Theory : euclidean!plane!geometry


Home Index