Nuprl Lemma : not-not-double-pasch

e:BasicGeometry. ∀a,b,c,a',b',p:Point.  (a_b_c  a'_b'_c  a_p_a'  (¬¬(∃q:Point. (p_q_c ∧ b_q_b'))))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-between: a_b_c geo-point: Point all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  exists: x:A. B[x] so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] guard: {T} prop: subtype_rel: A ⊆B uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T false: False not: ¬A implies:  Q all: x:A. B[x] cand: c∧ B
Lemmas referenced :  double-negation-hyp-elim Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-point_wf exists_wf not_wf geo-between_wf geo-between-symmetry Error :not-not-inner-pasch,  geo-between-exchange4 geo-between-exchange3 geo-between-inner-trans
Rules used in proof :  productElimination productEquality lambdaEquality instantiate voidElimination independent_functionElimination sqequalRule applyEquality dependent_set_memberEquality hypothesis independent_isectElimination isectElimination hypothesisEquality because_Cache dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation dependent_pairFormation

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',b',p:Point.
    (a\_b\_c  {}\mRightarrow{}  a'\_b'\_c  {}\mRightarrow{}  a\_p\_a'  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}q:Point.  (p\_q\_c  \mwedge{}  b\_q\_b'))))



Date html generated: 2017_10_02-PM-06_15_46
Last ObjectModification: 2017_08_05-PM-04_12_22

Theory : euclidean!plane!geometry


Home Index