Nuprl Lemma : not-not-double-pasch
∀e:BasicGeometry. ∀a,b,c,a',b',p:Point.  (a_b_c 
⇒ a'_b'_c 
⇒ a_p_a' 
⇒ (¬¬(∃q:Point. (p_q_c ∧ b_q_b'))))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
double-negation-hyp-elim, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-point_wf, 
exists_wf, 
not_wf, 
geo-between_wf, 
geo-between-symmetry, 
Error :not-not-inner-pasch, 
geo-between-exchange4, 
geo-between-exchange3, 
geo-between-inner-trans
Rules used in proof : 
productElimination, 
productEquality, 
lambdaEquality, 
instantiate, 
voidElimination, 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
dependent_set_memberEquality, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
dependent_pairFormation
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',b',p:Point.
    (a\_b\_c  {}\mRightarrow{}  a'\_b'\_c  {}\mRightarrow{}  a\_p\_a'  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}q:Point.  (p\_q\_c  \mwedge{}  b\_q\_b'))))
Date html generated:
2017_10_02-PM-06_15_46
Last ObjectModification:
2017_08_05-PM-04_12_22
Theory : euclidean!plane!geometry
Home
Index