Nuprl Lemma : out-congruent

e:BasicGeometry. ∀a,b,c,c',c1,d,d',d1:Point.
  (out(a cc')  out(b dd')  ac' ≅ bd'  a_c_c1  b_d_d1  cc1 ≅ bd  dd1 ≅ ac  (ac1 ≅ bd1 ∧ c'c1 ≅ d'd1))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B true: True prop: squash: T uimplies: supposing a uiff: uiff(P;Q) uall: [x:A]. B[x] member: t ∈ T cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x] geo-out: out(p ab)
Lemmas referenced :  geo-point_wf geo-out_wf geo-between_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-add-length-comm basic-geometry_wf geo-length-type_wf true_wf squash_wf geo-add-length_wf geo-add-length-between geo-congruent-iff-length geo-between-sep geo-between-out geo-out_inversion geo-out_transitivity geo-out-cong-cong
Rules used in proof :  instantiate independent_pairFormation baseClosed imageMemberEquality sqequalRule natural_numberEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality hypothesis because_Cache independent_isectElimination productElimination isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,c',c1,d,d',d1:Point.
    (out(a  cc')
    {}\mRightarrow{}  out(b  dd')
    {}\mRightarrow{}  ac'  \00D0  bd'
    {}\mRightarrow{}  a\_c\_c1
    {}\mRightarrow{}  b\_d\_d1
    {}\mRightarrow{}  cc1  \00D0  bd
    {}\mRightarrow{}  dd1  \00D0  ac
    {}\mRightarrow{}  (ac1  \00D0  bd1  \mwedge{}  c'c1  \00D0  d'd1))



Date html generated: 2017_10_02-PM-06_28_33
Last ObjectModification: 2017_08_05-PM-04_41_29

Theory : euclidean!plane!geometry


Home Index