Nuprl Lemma : out-congruent
∀e:BasicGeometry. ∀a,b,c,c',c1,d,d',d1:Point.
  (out(a cc') 
⇒ out(b dd') 
⇒ ac' ≅ bd' 
⇒ a_c_c1 
⇒ b_d_d1 
⇒ cc1 ≅ bd 
⇒ dd1 ≅ ac 
⇒ (ac1 ≅ bd1 ∧ c'c1 ≅ d'd1))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
geo-out: out(p ab)
Lemmas referenced : 
geo-point_wf, 
geo-out_wf, 
geo-between_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-congruent_wf, 
geo-add-length-comm, 
basic-geometry_wf, 
geo-length-type_wf, 
true_wf, 
squash_wf, 
geo-add-length_wf, 
geo-add-length-between, 
geo-congruent-iff-length, 
geo-between-sep, 
geo-between-out, 
geo-out_inversion, 
geo-out_transitivity, 
geo-out-cong-cong
Rules used in proof : 
instantiate, 
independent_pairFormation, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
productElimination, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,c',c1,d,d',d1:Point.
    (out(a  cc')
    {}\mRightarrow{}  out(b  dd')
    {}\mRightarrow{}  ac'  \00D0  bd'
    {}\mRightarrow{}  a\_c\_c1
    {}\mRightarrow{}  b\_d\_d1
    {}\mRightarrow{}  cc1  \00D0  bd
    {}\mRightarrow{}  dd1  \00D0  ac
    {}\mRightarrow{}  (ac1  \00D0  bd1  \mwedge{}  c'c1  \00D0  d'd1))
Date html generated:
2017_10_02-PM-06_28_33
Last ObjectModification:
2017_08_05-PM-04_41_29
Theory : euclidean!plane!geometry
Home
Index