Nuprl Lemma : pgeo-meet-implies-lsep

g:BasicProjectivePlane. ∀l,m,n:Line. ∀s:l ≠ m.  (l ∧ m ≠  {l ≠ n ∧ m ≠ n})


Proof




Definitions occuring in Statement :  basic-projective-plane: BasicProjectivePlane pgeo-meet: l ∧ m pgeo-lsep: l ≠ m pgeo-plsep: a ≠ b pgeo-line: Line guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} prop: and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B basic-projective-plane: BasicProjectivePlane member: t ∈ T implies:  Q all: x:A. B[x] false: False not: ¬A pgeo-incident: b or: P ∨ Q
Lemmas referenced :  pgeo-line_wf pgeo-lsep_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf subtype_rel_transitivity basic-projective-plane-subtype projective-plane-structure_subtype pgeo-plsep_wf pgeo-incident_wf pgeo-point_wf pgeo-meet_wf PL-sep-or pgeo-meet-incidence
Rules used in proof :  independent_isectElimination instantiate independent_pairFormation independent_functionElimination productEquality sqequalRule isectElimination setEquality lambdaEquality applyEquality hypothesisEquality hypothesis rename setElimination because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution voidElimination productElimination unionElimination

Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}l,m,n:Line.  \mforall{}s:l  \mneq{}  m.    (l  \mwedge{}  m  \mneq{}  n  {}\mRightarrow{}  \{l  \mneq{}  n  \mwedge{}  m  \mneq{}  n\})



Date html generated: 2018_05_22-PM-00_36_59
Last ObjectModification: 2017_11_29-PM-03_37_01

Theory : euclidean!plane!geometry


Home Index