Nuprl Lemma : pgeo-meet-implies-lsep
∀g:BasicProjectivePlane. ∀l,m,n:Line. ∀s:l ≠ m.  (l ∧ m ≠ n 
⇒ {l ≠ n ∧ m ≠ n})
Proof
Definitions occuring in Statement : 
basic-projective-plane: BasicProjectivePlane
, 
pgeo-meet: l ∧ m
, 
pgeo-lsep: l ≠ m
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
prop: ℙ
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
basic-projective-plane: BasicProjectivePlane
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
false: False
, 
not: ¬A
, 
pgeo-incident: a I b
, 
or: P ∨ Q
Lemmas referenced : 
pgeo-line_wf, 
pgeo-lsep_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
basic-projective-plane_wf, 
subtype_rel_transitivity, 
basic-projective-plane-subtype, 
projective-plane-structure_subtype, 
pgeo-plsep_wf, 
pgeo-incident_wf, 
pgeo-point_wf, 
pgeo-meet_wf, 
PL-sep-or, 
pgeo-meet-incidence
Rules used in proof : 
independent_isectElimination, 
instantiate, 
independent_pairFormation, 
independent_functionElimination, 
productEquality, 
sqequalRule, 
isectElimination, 
setEquality, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
rename, 
setElimination, 
because_Cache, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
voidElimination, 
productElimination, 
unionElimination
Latex:
\mforall{}g:BasicProjectivePlane.  \mforall{}l,m,n:Line.  \mforall{}s:l  \mneq{}  m.    (l  \mwedge{}  m  \mneq{}  n  {}\mRightarrow{}  \{l  \mneq{}  n  \mwedge{}  m  \mneq{}  n\})
Date html generated:
2018_05_22-PM-00_36_59
Last ObjectModification:
2017_11_29-PM-03_37_01
Theory : euclidean!plane!geometry
Home
Index