Nuprl Lemma : pgeo-order_incidence-eq

pg:ProjectivePlane. ∀n:ℕ. ∀l1,l2:Line.  (order(pg)  p,q:{p:Point| l1} //p ≡ p,q:{p:Point| l2} //p ≡ q\000C)


Proof




Definitions occuring in Statement :  pgeo-order: order(pg) n projective-plane: ProjectivePlane pgeo-peq: a ≡ b pgeo-incident: b pgeo-line: Line pgeo-point: Point equipollent: B quotient: x,y:A//B[x; y] nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  nat: so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: uimplies: supposing a subtype_rel: A ⊆B guard: {T} uall: [x:A]. B[x] member: t ∈ T pgeo-order: order(pg) n implies:  Q all: x:A. B[x]
Lemmas referenced :  nat_wf pgeo-line_wf pgeo-order_wf equipollent_transitivity int_seg_wf pgeo-order-equiv_rel pgeo-peq_wf pgeo-incident_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-point_wf quotient_wf equipollent_inversion
Rules used in proof :  independent_functionElimination addEquality natural_numberEquality rename setElimination lambdaEquality because_Cache sqequalRule independent_isectElimination instantiate applyEquality setEquality isectElimination extract_by_obid introduction hypothesisEquality thin dependent_functionElimination hypothesis cut sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}n:\mBbbN{}.  \mforall{}l1,l2:Line.
    (order(pg)  =  n  {}\mRightarrow{}  p,q:\{p:Point|  p  I  l1\}  //p  \mequiv{}  q  \msim{}  p,q:\{p:Point|  p  I  l2\}  //p  \mequiv{}  q)



Date html generated: 2018_05_22-PM-00_59_10
Last ObjectModification: 2018_05_21-AM-01_31_57

Theory : euclidean!plane!geometry


Home Index