Nuprl Lemma : right-angles-congruent-axiom_wf

[g:BasicGeometry]. (right-angles-congruent-axiom(g) ∈ ℙ)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry right-angles-congruent-axiom: right-angles-congruent-axiom(e) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T right-angles-congruent-axiom: right-angles-congruent-axiom(e) subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  all_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf right-angle_wf geo-sep_wf geo-cong-angle_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination lambdaEquality because_Cache functionEquality productEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:BasicGeometry].  (right-angles-congruent-axiom(g)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-06_48_20
Last ObjectModification: 2017_08_23-PM-03_40_48

Theory : euclidean!plane!geometry


Home Index