Nuprl Lemma : right-angles-congruent-axiom_wf
∀[g:BasicGeometry]. (right-angles-congruent-axiom(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
right-angles-congruent-axiom: right-angles-congruent-axiom(e)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
right-angles-congruent-axiom: right-angles-congruent-axiom(e)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
right-angle_wf, 
geo-sep_wf, 
geo-cong-angle_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
functionEquality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:BasicGeometry].  (right-angles-congruent-axiom(g)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-06_48_20
Last ObjectModification:
2017_08_23-PM-03_40_48
Theory : euclidean!plane!geometry
Home
Index