Nuprl Lemma : fun-sep-symmetry

[A:Type]. ∀ss:SeparationSpace. ∀f,g:A ⟶ Point.  (fun-sep(ss;A;f;g)  fun-sep(ss;A;g;f))


Proof




Definitions occuring in Statement :  fun-sep: fun-sep(ss;A;f;g) ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: member: t ∈ T exists: x:A. B[x] fun-sep: fun-sep(ss;A;f;g) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-point_wf fun-sep_wf ss-sep_wf ss-sep-symmetry
Rules used in proof :  universeEquality functionEquality isectElimination hypothesis independent_functionElimination cumulativity functionExtensionality applyEquality dependent_functionElimination extract_by_obid introduction cut hypothesisEquality dependent_pairFormation thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type].  \mforall{}ss:SeparationSpace.  \mforall{}f,g:A  {}\mrightarrow{}  Point.    (fun-sep(ss;A;f;g)  {}\mRightarrow{}  fun-sep(ss;A;g;f))



Date html generated: 2016_11_08-AM-09_11_49
Last ObjectModification: 2016_11_02-AM-10_34_32

Theory : inner!product!spaces


Home Index