Nuprl Lemma : proj-eq_transitivity
∀[n:ℕ]. ∀[a,b,c:ℙ^n].  (a = c) supposing (b = c and a = b)
Proof
Definitions occuring in Statement : 
proj-eq: a = b
, 
real-proj: ℙ^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
proj-eq: a = b
, 
all: ∀x:A. B[x]
, 
real-proj: ℙ^n
, 
real-vec: ℝ^n
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
prop: ℙ
, 
guard: {T}
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
proj-eq-equiv, 
req_witness, 
rmul_wf, 
int_seg_wf, 
proj-eq_wf, 
real-proj_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
natural_numberEquality, 
addEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbP{}\^{}n].    (a  =  c)  supposing  (b  =  c  and  a  =  b)
Date html generated:
2017_10_05-AM-00_18_35
Last ObjectModification:
2017_06_17-AM-10_07_50
Theory : inner!product!spaces
Home
Index