Nuprl Lemma : proj-eq-equiv
∀[n:ℕ]. EquivRel(ℙ^n;a,b.a = b)
Proof
Definitions occuring in Statement : 
proj-eq: a = b
, 
real-proj: ℙ^n
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
proj-eq: a = b
, 
real-proj: ℙ^n
, 
real-vec: ℝ^n
, 
uimplies: b supposing a
, 
nat: ℕ
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_weakening, 
rmul_wf, 
int_seg_wf, 
real-proj_wf, 
proj-eq_wf, 
req_witness, 
nat_wf, 
all_wf, 
req_wf, 
squash_wf, 
exists_wf, 
real_wf, 
rneq_wf, 
int-to-real_wf, 
req-vec_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
real-vec-mul_wf, 
req_functionality, 
proj-eq-iff, 
sym_functionality_wrt_iff, 
req-vec_functionality, 
req-vec_weakening, 
rmul-neq-zero, 
real-vec-mul-mul, 
real-vec-mul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
addEquality, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
setEquality, 
dependent_set_memberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
addLevel, 
allFunctionality, 
existsFunctionality
Latex:
\mforall{}[n:\mBbbN{}].  EquivRel(\mBbbP{}\^{}n;a,b.a  =  b)
Date html generated:
2017_10_05-AM-00_18_26
Last ObjectModification:
2017_06_17-AM-10_07_38
Theory : inner!product!spaces
Home
Index