Nuprl Lemma : proj-eq_wf

[n:ℕ]. ∀[a,b:ℙ^n].  (a b ∈ ℙ)


Proof




Definitions occuring in Statement :  proj-eq: b real-proj: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proj-eq: b nat: so_lambda: λ2x.t[x] real-proj: ^n real-vec: ^n so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf req_wf rmul_wf real-proj_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis lambdaEquality because_Cache applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbP{}\^{}n].    (a  =  b  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_18_03
Last ObjectModification: 2017_06_17-AM-10_07_14

Theory : inner!product!spaces


Home Index