Nuprl Lemma : proj-eq_wf
∀[n:ℕ]. ∀[a,b:ℙ^n].  (a = b ∈ ℙ)
Proof
Definitions occuring in Statement : 
proj-eq: a = b
, 
real-proj: ℙ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
proj-eq: a = b
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
real-proj: ℙ^n
, 
real-vec: ℝ^n
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
int_seg_wf, 
req_wf, 
rmul_wf, 
real-proj_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbP{}\^{}n].    (a  =  b  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_18_03
Last ObjectModification:
2017_06_17-AM-10_07_14
Theory : inner!product!spaces
Home
Index