Nuprl Lemma : proj-eq-iff
∀n:ℕ. ∀a,b:ℙ^n.  (a = b 
⇐⇒ ↓∃m:{m:ℝ| m ≠ r0} . req-vec(n + 1;a;m*b))
Proof
Definitions occuring in Statement : 
proj-eq: a = b
, 
real-proj: ℙ^n
, 
real-vec-mul: a*X
, 
req-vec: req-vec(n;x;y)
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
real-proj: ℙ^n
, 
proj-eq: a = b
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
le: A ≤ B
, 
real-vec: ℝ^n
, 
cand: A c∧ B
, 
real-vec-mul: a*X
, 
req-vec: req-vec(n;x;y)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
sq_stable: SqStable(P)
Lemmas referenced : 
proj-eq_wf, 
squash_wf, 
real_wf, 
rneq_wf, 
int-to-real_wf, 
req-vec_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
real-vec-mul_wf, 
real-proj_wf, 
istype-nat, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
rdiv_wf, 
rmul-nonzero, 
rmul_wf, 
rneq_functionality, 
req_weakening, 
rdiv-nonzero, 
rmul_preserves_req, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
req_functionality, 
rmul_comm, 
req-same, 
req_transitivity, 
rmul_functionality, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
sq_stable__proj-eq, 
int_seg_wf, 
rmul_assoc, 
rmul-ac
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
introduction, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
universeIsType, 
extract_by_obid, 
isectElimination, 
productEquality, 
setEquality, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
because_Cache, 
inhabitedIsType, 
productElimination, 
applyEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}m:\{m:\mBbbR{}|  m  \mneq{}  r0\}  .  req-vec(n  +  1;a;m*b))
Date html generated:
2020_05_20-PM-01_16_43
Last ObjectModification:
2020_01_06-PM-00_10_31
Theory : inner!product!spaces
Home
Index