Nuprl Lemma : proj-eq-iff

n:ℕ. ∀a,b:ℙ^n.  (a ⇐⇒ ↓∃m:{m:ℝm ≠ r0} req-vec(n 1;a;m*b))


Proof




Definitions occuring in Statement :  proj-eq: b real-proj: ^n real-vec-mul: a*X req-vec: req-vec(n;x;y) rneq: x ≠ y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T set: {x:A| B[x]}  add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q squash: T member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False real-proj: ^n proj-eq: b int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b le: A ≤ B real-vec: ^n cand: c∧ B real-vec-mul: a*X req-vec: req-vec(n;x;y) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 sq_stable: SqStable(P)
Lemmas referenced :  proj-eq_wf squash_wf real_wf rneq_wf int-to-real_wf req-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le real-vec-mul_wf real-proj_wf istype-nat int_seg_properties intformless_wf int_formula_prop_less_lemma rdiv_wf rmul-nonzero rmul_wf rneq_functionality req_weakening rdiv-nonzero rmul_preserves_req rinv_wf2 itermSubtract_wf itermMultiply_wf req_functionality rmul_comm req-same req_transitivity rmul_functionality rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma sq_stable__proj-eq int_seg_wf rmul_assoc rmul-ac
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation introduction cut hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed universeIsType extract_by_obid isectElimination productEquality setEquality natural_numberEquality dependent_set_memberEquality_alt addEquality setElimination rename dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  voidElimination because_Cache inhabitedIsType productElimination applyEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (a  =  b  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}m:\{m:\mBbbR{}|  m  \mneq{}  r0\}  .  req-vec(n  +  1;a;m*b))



Date html generated: 2020_05_20-PM-01_16_43
Last ObjectModification: 2020_01_06-PM-00_10_31

Theory : inner!product!spaces


Home Index