Nuprl Lemma : rdiv-nonzero
∀x,y:ℝ.  (y ≠ r0 
⇒ ((x/y) ≠ r0 
⇐⇒ x ≠ r0))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rdiv: (x/y)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
rmul-nonzero, 
rinv_wf2, 
rneq_wf, 
int-to-real_wf, 
rdiv_wf, 
iff_wf, 
real_wf, 
rmul_reverses_rless_iff, 
rless_wf, 
rmul_preserves_rless, 
rmul_wf, 
rmul-zero-both, 
rmul_comm, 
rless-int, 
rless_functionality, 
req_transitivity, 
rmul-rinv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_functionElimination, 
hypothesis, 
productElimination, 
independent_pairFormation, 
productEquality, 
natural_numberEquality, 
addLevel, 
impliesFunctionality, 
independent_isectElimination, 
unionElimination, 
inlFormation, 
because_Cache, 
sqequalRule, 
inrFormation, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}x,y:\mBbbR{}.    (y  \mneq{}  r0  {}\mRightarrow{}  ((x/y)  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0))
Date html generated:
2017_10_03-AM-08_50_01
Last ObjectModification:
2017_06_15-PM-03_58_18
Theory : reals
Home
Index