Nuprl Lemma : rdiv-nonzero

x,y:ℝ.  (y ≠ r0  ((x/y) ≠ r0 ⇐⇒ x ≠ r0))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] rdiv: (x/y) iff: ⇐⇒ Q and: P ∧ Q prop: rev_implies:  Q uimplies: supposing a rneq: x ≠ y or: P ∨ Q guard: {T} less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  rmul-nonzero rinv_wf2 rneq_wf int-to-real_wf rdiv_wf iff_wf real_wf rmul_reverses_rless_iff rless_wf rmul_preserves_rless rmul_wf rmul-zero-both rmul_comm rless-int rless_functionality req_transitivity rmul-rinv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_functionElimination hypothesis productElimination independent_pairFormation productEquality natural_numberEquality addLevel impliesFunctionality independent_isectElimination unionElimination inlFormation because_Cache sqequalRule inrFormation imageMemberEquality baseClosed

Latex:
\mforall{}x,y:\mBbbR{}.    (y  \mneq{}  r0  {}\mRightarrow{}  ((x/y)  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0))



Date html generated: 2017_10_03-AM-08_50_01
Last ObjectModification: 2017_06_15-PM-03_58_18

Theory : reals


Home Index