Nuprl Lemma : rmul-nonzero

x,y:ℝ.  (x y ≠ r0 ⇐⇒ x ≠ r0 ∧ y ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T} rev_implies:  Q uimplies: supposing a less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rmul-one-both rdiv-zero rmul-rdiv-cancel rmul-ac req_transitivity rmul_comm rmul_functionality rmul-assoc req_inversion req_functionality uiff_transitivity rmul-int-rdiv rmul-rdiv-cancel2 rmul-zero-both rless_functionality req_weakening req_wf rless-int rmul_reverses_rless rdiv_wf rmul_reverses_rless_iff real_wf and_wf rmul-neq-zero rmul_wf rneq_wf rmul-is-positive int-to-real_wf rless_wf rmul-is-negative
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution unionElimination thin cut lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis inlFormation isectElimination natural_numberEquality productElimination sqequalRule inrFormation because_Cache independent_isectElimination introduction imageMemberEquality baseClosed multiplyEquality addLevel promote_hyp

Latex:
\mforall{}x,y:\mBbbR{}.    (x  *  y  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mneq{}  r0  \mwedge{}  y  \mneq{}  r0)



Date html generated: 2016_05_18-AM-07_33_46
Last ObjectModification: 2016_01_17-AM-02_02_16

Theory : reals


Home Index