Nuprl Lemma : rdiv-zero
∀[x:ℝ]. (r0/x) = r0 supposing x ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rneq: x ≠ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rdiv: (x/y), 
implies: P ⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rdiv_wf, 
int-to-real_wf, 
rneq_wf, 
real_wf, 
rmul_wf, 
rinv_wf2, 
req_weakening, 
req_functionality, 
rmul-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination
Latex:
\mforall{}[x:\mBbbR{}].  (r0/x)  =  r0  supposing  x  \mneq{}  r0
Date html generated:
2016_05_18-AM-07_21_25
Last ObjectModification:
2015_12_28-AM-00_47_46
Theory : reals
Home
Index