Nuprl Lemma : lattice-join-is-lub

l:Lattice. ∀a,b:Point(l).  least-upper-bound(Point(l);x,y.x ≤ y;a;b;a ∨ b)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-join: a ∨ b lattice-point: Point(l) least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c) and: P ∧ Q lattice-le: a ≤ b uall: [x:A]. B[x] member: t ∈ T cand: c∧ B implies:  Q prop: lattice: Lattice uiff: uiff(P;Q) uimplies: supposing a squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lattice_properties equal_wf lattice-point_wf lattice-meet_wf lattice_wf lattice-join_wf lattice-le-iff squash_wf true_wf iff_weakening_equal lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation equalitySymmetry cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis sqequalRule setElimination rename because_Cache hyp_replacement applyLambdaEquality independent_isectElimination applyEquality lambdaEquality imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}l:Lattice.  \mforall{}a,b:Point(l).    least-upper-bound(Point(l);x,y.x  \mleq{}  y;a;b;a  \mvee{}  b)



Date html generated: 2017_10_05-AM-00_31_02
Last ObjectModification: 2017_07_28-AM-09_12_53

Theory : lattices


Home Index