Nuprl Lemma : vs-0-map_wf
∀[K:Rng]. ∀[vs,ws:VectorSpace(K)].  (0 ∈ ws ⟶ vs)
Proof
Definitions occuring in Statement : 
vs-0-map: 0
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
vs-0-map: 0
, 
vs-map: A ⟶ B
, 
rng: Rng
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
vs-0_wf, 
vs-point_wf, 
vs-zero-add, 
vs-zero-mul, 
rng_car_wf, 
vs-add_wf, 
rng_properties, 
vs-mul_wf, 
vector-space_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
universeIsType, 
lambdaFormation_alt, 
equalitySymmetry, 
inhabitedIsType, 
independent_pairFormation, 
productIsType, 
functionIsType, 
equalityIstype, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
dependent_functionElimination
Latex:
\mforall{}[K:Rng].  \mforall{}[vs,ws:VectorSpace(K)].    (0  \mmember{}  ws  {}\mrightarrow{}  vs)
Date html generated:
2019_10_31-AM-06_26_57
Last ObjectModification:
2019_08_12-AM-10_55_01
Theory : linear!algebra
Home
Index