Nuprl Lemma : vs-0-map_wf

[K:Rng]. ∀[vs,ws:VectorSpace(K)].  (0 ∈ ws ⟶ vs)


Proof




Definitions occuring in Statement :  vs-0-map: 0 vs-map: A ⟶ B vector-space: VectorSpace(K) uall: [x:A]. B[x] member: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T vs-0-map: 0 vs-map: A ⟶ B rng: Rng and: P ∧ Q cand: c∧ B all: x:A. B[x]
Lemmas referenced :  vs-0_wf vs-point_wf vs-zero-add vs-zero-mul rng_car_wf vs-add_wf rng_properties vs-mul_wf vector-space_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_set_memberEquality_alt lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality universeIsType lambdaFormation_alt equalitySymmetry inhabitedIsType independent_pairFormation productIsType functionIsType equalityIstype applyEquality axiomEquality equalityTransitivity isect_memberEquality_alt isectIsTypeImplies dependent_functionElimination

Latex:
\mforall{}[K:Rng].  \mforall{}[vs,ws:VectorSpace(K)].    (0  \mmember{}  ws  {}\mrightarrow{}  vs)



Date html generated: 2019_10_31-AM-06_26_57
Last ObjectModification: 2019_08_12-AM-10_55_01

Theory : linear!algebra


Home Index